Application of the cooling curve analyses in aluminum casting plant

Authors: Mile Djurdjevic, Florian Dirnberger, Marko Grzincic
Introduction

• Understanding of the melt quality is necessity for the control and prediction of casting characteristics.

• Assessment of these characteristics on-line during manufacturing process allowed foundry man to make decision relevant to melt and casting quality control, reducing cost downtime and scrap levels.

• Thermal Analysis (TA) has the potential of providing such capabilities.
What is Thermal Analysis?

• Thermal analysis can be described as a “finger print” of the solidification process.

• Measuring and recording the temperature during solidification of an alloy, the temperature – time plot is obtained that yield useful information about how the alloy freezes.

• Such plot is called a cooling curve and general name to the technique is thermal analysis.

• Major and minor metallurgical reactions (that are thermodynamically strong enough in terms of latent heat evolution) are manifested on the cooling curve by inflection points and slope changes.

• In the aluminum casting industry, the attempts of thermal analysis to the study of the test sample structure was reported in the early 1980.
Review of major commercial TA apparatus presently used at Aluminum Casting Plants
<table>
<thead>
<tr>
<th>Thermal Analysis System</th>
<th>Type of TA cup/weight of TA probe</th>
<th>Thermal Analysis Apparatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>Steel/100g</td>
<td></td>
</tr>
<tr>
<td>Ideco</td>
<td>Steel/250g</td>
<td></td>
</tr>
<tr>
<td>OCC</td>
<td>Sand/ 80g</td>
<td></td>
</tr>
<tr>
<td>Thermal Analysis System</td>
<td>Type of TA cup/weight of TA probe</td>
<td>Thermal Analysis Apparatus</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>AluDelta</td>
<td>Sand/100g</td>
<td></td>
</tr>
<tr>
<td>Thermatest 5000 NG III (Foseco)</td>
<td>Ceramic/200g</td>
<td></td>
</tr>
<tr>
<td>Thermal Analysis Cup</td>
<td>Sand/200g Steel/200g</td>
<td></td>
</tr>
</tbody>
</table>
Present Application of Thermal Analysis in Aluminum Casting Plant
Thermal Analysis as a Quality Control Tool in Aluminum Casting Plant

• Presently cooling curve analysis has been mostly used in aluminum casting plant to quantify following two parameters:

 • grain size,

 • level of silicon modification
Cooling curve of AlSi6Cu4 alloy

- **Primary solidification of α-Al**
- **Precipitation of AlSi eutectic**
- **Precipitation of Cu rich eutectic**
Quantification of the Grain Size

Metallographically

ASTM comparison chart for determination of the grain size from metallographically prepared samples.

Thermal Analysis

The determination of grain size by thermal analysis utilizes that portion of the cooling curve associated with the beginning of primary solidification.

The smaller the ΔT the smaller the grain size.

GS = 8.3 - 0.36 ΔT
Assessment of the Grain Refinement by the Cooling Curve Analysis

\(\theta_1 \) is the temperature at which the solidification begins
\(\theta_2 \) is the maximum temperature reached at the end of the undercooling
\(\Delta \theta \) is the apparent undercooling equal to \(\theta_2 - \theta_1 \)
\(t_1 \) is the duration of undercooling.

The smaller the \(\Delta \theta \), the higher the potency of master alloys for grain refinement and the smaller resulting casting grain size.
Modification of the eutectic microstructure

- The term “modification” describes the condition of refinement of the silicon particles.

- The modifying effect is the transition from blocky, acicular and needle-like silicon phases to a fine fibrous silicon structure.

- Modification of Al-Si alloys can be achieved either addition of chemical modifiers such as: **Strontium**, Sodium or Antimony or through rapid solidification.
Thermal Analysis Cooling Curves for Low (8 ppm) and High (98 ppm) Levels of Strontium

• The depression of the Al-Si eutectic growth temperature, (ΔT) represents the temperature difference between the unmodified and modified Al-Si eutectic growth temperatures.

• The larger the ΔT, the higher the level of Si modification.

• The level of active and inactive Sr in the melt can be estimate only by ΔT parameter.
Advance Application of Thermal Analysis in Aluminum Casting Plant
A state–of-the-art thermal analysis system should be able to quantify parameters such as:

- dendrite coherency point,
- low melting point of secondary eutectic,
- precipitation of iron intermetallics,
- fraction solid and
- other characteristic temperatures such as: T_{LIQ}, $T_{AlSi}^{E,G}$, $T_{AlCu}^{E,G}$ and T_{SOL}, liquidus, Al-Si eutectic, Al-Cu eutectic and solidus temperature, respectively.
Dendrite Coherency Point
Dendrite Coherency Point

The DCP is an important feature for understanding and for consequent control of the alloy solidification process.

- The DCP marks the transition from mass feeding to interdendritic feeding in the solidification process.
- Casting defects such as macro segregation, shrinkage porosity and hot tearing begin to develop after the DCP event.

Major factors that have significant impact on DCP are:

- Solidification conditions – cooling rate
- Chemical Compositions
- Addition of grain refiners

The DCP is a physical phenomenon however, its direct detection is virtually impossible.
Detection of Dendrite Coherency Point using Cooling Curve Analysis

Graph showing cooling curve with temperature vs. time, indicating dendrite coherency point and temperature difference ($\Delta T = T_w - T_c$).
Temperature of Low Melting Point Elements
Introduction

- Aluminum casting plants are using significant amount of secondary aluminum alloys.
- Low melting point elements are unavoidable major impurities in these alloys, usually present in ppm level.
- Tin and lead belong to this group of alloying elements.
- There is no consensus in the literature and practice regarding the tolerable levels of Sn/Pb presents in aluminum alloys.
- The presence of Sn/Pb in excess amounts could cause very serious defects in as cast products.
- There is a need to analyze the impact of non uniform distribution of Sn/Pb in incoming ingots on the solidification path of secondary aluminum alloys and their mechanical properties.
Impact of Sn on the characteristic solidification temperatures of AlSi6Cu4 alloys
Impact of Pb on the characteristic solidification temperatures of AlSi6Cu4 alloys
Precipitation Temperature of Fe Intermetallics
Iron in cast aluminum alloys

- Fe is the major impurity element in aluminium alloys
- Fe decrease mechanical properties of aluminium alloys
- Fe decrease castability of aluminium alloys
- Fe decrease ductility of aluminium alloys
- Fe together with Cr and Mn forms sludge phases

Detrimental

\[\beta-\text{Al}_5\text{FeSi} \]

Harmless

\[\alpha-\text{Al}_{15}(\text{Fe,Mn})_3\text{Si}_2 \]
Detection of the precipitation temperature of Fe intermetallics using cooling curve analysis.
Fraction Solid Calculation using Thermal Analysis
First derivative of AlSi5Cu4 alloy and its Newtonian base line
Calculation of the fraction solid applying Newtonian method

![Graph showing the fraction solid versus temperature, with a peak around 575 °C.]

- **Fraction Solid (Newtonian)**
Fraction solid curves for AlSi5Cu4 alloy calculated using Newtonian and Fourier base lines.
Conclusions

- Aluminum casting plants are using significant amounts (in number and quantity) of aluminum primary, secondary and master alloys.

- A comprehensive understanding of melt quality is of vital importance for the control and prediction of actual casting characteristics.

- In order to control the quality of incoming ingots, melts, cast products, optimize the amount of master alloys added into aluminum melt and do expert analyses of scrap products there is a need to use **Thermal Analysis** as a quality control tool.